电冰箱的工作原理图_电冰箱的工作原理图解

清理保养
2024 05-04 23:26 点击:
电冰箱的工作原理图_电冰箱的工作原理图解

       在接下来的时间里,我将为大家提供一些关于电冰箱的工作原理图的信息,并尽力回答大家的问题。让我们开始探讨一下电冰箱的工作原理图的话题吧。

1.冰箱脉冲电磁阀工作原理冰箱脉冲电磁阀工作原理讲解

2.制冷系统的工作原理

3.根据电冰箱制冷系统原理绘出控制系统方框图

4.冰箱启动器的原理、结构图、线路图分别是什么?

5.冰箱电路原理图

电冰箱的工作原理图_电冰箱的工作原理图解

冰箱脉冲电磁阀工作原理冰箱脉冲电磁阀工作原理讲解

       电冰箱中的电磁阀主要用于改变制冷剂的流向,以此控制电冰箱不同箱室的制冷温度。常见的电冰箱电磁阀主要有二通电磁阀、二位三通电磁阀、一进三出电磁阀、三体六位五通电磁阀等。

       电冰箱中各种电磁阀的实物外形如下图所示:

       1、二通电磁阀

       二通电磁阀主要由阀孔通道,电磁线圈,阀杆,复位弹簧等构成,如下图所示。

       二通电磁阀的工作原理如下图:

       当二通电磁阀得电时,阀杆便会受到电磁线圈的作用克服弹簧的弹力,向上运动,使得阀孔通道导通,制冷剂便能够顺畅地流动。当电磁线圈失电时,阀杆在复位弹簧作用下,向下动作,挡住阀孔通道,从而阻断制冷剂的流通,防止高压制冷剂倒流入蒸发器,不仅延长了蒸发器的保温时间,也可有效避免压缩机再次起动时发生液击现象。

       2、二位三通电磁阀

       二位三通电磁阀多用于双温双控或多温多控电冰箱中,下图所示为二位三通电磁阀的实物外形及内部结构,从图中可以看到,二位三通电磁阀主要是由进口端、出口端以及阀芯等构成的。

       二位三通电磁阀工作原理如下图:

       当二位三通电磁阀得电时,电磁阀阀芯移动,交冷藏室毛细管截止,使入口端与冷冻室毛细管导通。当电磁阀供电消失时,电磁阀阀芯将冷冻室毛细管截止,使入口端与冷藏室毛细管导通。

       下图所示为二通电磁阀和二位三通电磁阀的具体应用。当控制电路使二通电磁阀导通时,冷藏室蒸发器开始制冷;而当二通电磁阀截止时,冷藏室停止制冷。

       3、—进三出电磁阀

       一进三出电磁阀共有四个管口,其中一个管口为进口端,用于连接干燥过滤器,而另外三个管口均为出口端,分别用于连接变温毛细管、冷冻毛细管、冷藏毛细管,如下图所示。

       一进三出电磁阀工作原理如下图:

       一进三出电磁阀有两组线圈,当线圈1得电,线圈2失电时,入口端与出口端2导通,出口端1和出口端3截止;当线圈1失电,线圈2失电时,入口端与出口端3导通,出口端1和出口端2截止;当线圈1失电,线圈2得电时,入口端与出口端1导通,出口端2和出口端3截止。

       下图所示为一进三出电磁阀在电冰箱制冷管路中的具体应用:

       当电磁阀线圈1得电、线圈2失电时,电磁阀出口管B接通,出口管A、C截止,此时,冰箱冷藏室、冷冻室制冷。

       当电磁阀线圈1失电、线圈2也失电时,电磁阀出口管C接通,出口管A、B截止,此时,冰箱冷冻室制冷。

       当电磁阀线圈1失电、线圈2得电时,电磁阀出口管A接通,出口管B、C截止,此时,冰箱变温室、冷冻室制冷。

制冷系统的工作原理

       (1)单门直冷式电冰箱重锤式控制电路

       电路的基本组成:采用重锤式启动继电器启动的直冷式电冰箱电路如图3-26所示,由压缩机电动机、重锤式启动继电器、碟形过载保护器等组成启动保护电路,由温控器和门灯及门灯开关组成温控和照明电路。

       图3-26 重锤式启动继电器启动的直冷式电冰箱电路图

       1.启动电容器 2.重锤式启动继电器 3.制冷压缩机电动机 4.蝶形过载保护器 5.温度控制器 6.照明灯开关 7.电源插头 8.箱内照明灯

       电路的基本工作过程:

       ①启动电路。在电冰箱接通电源时,温控器处于接通状态,启动继电器启动触点处于断开状态。电流经碟形过载保护器、电动机运行绕组、启动继电器的电流线圈形成回路。由于此时电动机定子线圈不能形成旋转磁场,转子不能转动,因此电流急增至额定值的5~6倍,使启动继电器线圈产生较强磁力,使动静触点吸和;电流进入电动机的启动绕组,定子形成旋转磁场,电动机开始运行。随着电动机转速的提高,电流下降,重锤式启动继电器线圈磁力减弱,动静触点分离,电动机进入正常运转。

       ②控温电路。当电冰箱内温度高于温控器上限值时,温控器触点接通,启动电路得电,压缩机电动机启动;随着压缩机的运行,制冷系统工作,冰箱内部温度不断下降,当温度低于温控器的下限值时,温控器触点断开,压缩机停机,制冷系统停止工作。

       ③保护电路。当电动机在启动或运行过程中,电路出现过载或压缩机因某种原因造成机壳温升过高时,紧贴在压缩机外壳上的碟形过载保护器中的电热丝发热,双金属片在高温下发生弯曲变形,达到一定程度后触点断开,切断电路,起到对压缩机保护的作用。

       (2)单门直冷式电冰箱PTC式控制电路

       电路的基本组成:采用PTC启动继电器启动的直冷式电冰箱电路如图3-27所示。电路由压缩机电动机、PTC启动继电器、碟形过载保护器、温控器及门灯开关等组成。

       图3-27 PTC启动继电器启动的直冷式电冰箱电路图

       1.蝶形过载保护器 2.温度控制器 3.照明灯开关 4.电源插头 5.箱内照明灯 6.PTC元件 7.压缩机电动机 8.内埋式保护继电器

       电路的基本工作过程:PTC启动继电器启动的直冷电冰箱电路与重锤式启动继电器启动的直冷电冰箱电路在控温电路、保护电路以及照明电路部分原理相同。两者的区别在于启动电路中启动继电器的不同。PTC又称为正温度系数热敏电阻,是一种半导体元件。电冰箱接通电源时,PTC元件处于低温低阻值状态,压缩机电动机启动绕组和运行绕组通电,形成旋转磁场,转子转动;与此同时,通过PTC元件的电流使其温度升高,当温度上升至居里点以上,PTC进入高阻值状态,电动机电路被切断,电动机启动结束,进入正常工作状态。

       (3)双门直冷式电冰箱控制电路

       具有温度补偿的直冷式双门电冰箱电路如图3-28所示。其工作过程大体与上述单门直冷式电冰箱相同。不同点在于:在冷藏室的蒸发器上装有温度补偿用电热丝,当温控器触点断开时,通电加热,给副蒸发器化霜并兼有温度补偿作用,使冬季环境温度较低时,温控器触点断开的时间不至过长,以缩短压缩机的停机时间,从而保证电冰箱冷冻室在环境温度较低的情况下,有正常的冷冻能力。

       图3-28 双门直冷式电冰箱电路图

       1.温控器 2.除霜加热器 3.启动继电器 4.压缩机电机线圈 5.过载保护器

       (4)双门间冷式电冰箱控制电路

       间冷式电冰箱电路如图3-29所示,电路由5部分组成。

       图3-29 间冷式电冰箱电路图

       1.启动继电器 2.启动电容器 3.风扇电动机 4.冷冻室风扇电动机开关 5.照明灯 6.温感风门温控器壳体加热器 7.温控器 8.化霜时间继电器 9.双金属温控器 10.接水盘加热器 11.化霜加热器12.风扇口圈加热器 13.排水管加热器 14.化霜超热保护器 15.冷藏室风扇/灯开关 16.电动机 17.蝶形过载保护器

       ①压缩机电动机、重锤式或PTC式启动继电器和过载保护器组成的启动保护电路。

       ②由冷冻室温控器构成的压缩机运行控制电路。

       ③由化霜定时器、双金属化霜温控器、化霜加热器、化霜超热保护器构成的全自动化霜电路。

       ④由接水盘加热器、排水管加热器和风扇口圈加热器构成的加热防冻电路。

       ⑤由电风扇电动机、照明灯和两个箱门开关构成的送风控制和照明电路。

       (5)双门间冷式电冰箱化霜控制电路

       以图3-26间冷式电冰箱电路为例,其启动保护电路、运行控制电路、照明电路与直冷式电冰箱基本相同。其化霜电路的工作原理是:

       电路接通电源后,温控器触点接通,化霜定时器触点1和触点2接通,压缩机电动机启动运行,电冰箱开始制冷。同时化霜定时器的时钟电动机M,化霜加热器和化霜超热保护器也有电流通过。虽然化霜定时器时钟电动机M与化霜加热器串联在电路中,但是由于化霜定时器时钟电机M的内阻远大于化霜加热器、接水盘加热器、排水管加热器和风扇口圈加热器的并联电阻,因此在电路制冷运行过程中,各个加热器并不工作,而化霜定时器的时钟与压缩机电动机同步运行记录其运行的时间。当化霜定时器记录到压缩机运行时间累计24h后,化霜定时器的触点3与触点1断开,与触点2接通,压缩机电动机和风扇电动机停止运行,开始化霜。此时,化霜定时器的时钟电动机被双金属化霜温控器短路,电流流过化霜加热器使之通电化霜。随着化霜过程的进一步进行,蒸发器表面温度逐渐升高,当蒸发器表面温度达到13℃时,蒸发器上的霜已全部融化,双金属化霜温控器触点跳开,切断加热器供电电路,同时接通化霜定时器时钟电动机的供电。化霜时钟电动机通电2min后,化霜定时器触点3与触点2断开,与触点1接通,压缩机电动机重新运行,化霜定时器时钟电动机重新开始累计时间,24h后,重复上述过程。压缩机开始制冷运行后,当蒸发器表面温度降为-5℃左右时,双金属化霜温控器触点复位,为下一次化霜做准备。

       化霜电路中串入化霜超热保护,是为了防止因化霜温控器动作失灵,在达到化霜温度后,触点不能断开加热电路,造成蒸发器温度过高,管道压力过大发生爆裂而设置的。当蒸发器表明温度达到65~70℃时,化霜超热保护器会自动熔断,切断加热电路。

       (6)双门间冷式电冰箱送风和辅助电路

       风扇电动机受温控器和箱门开关的双重控制。当温控器导通、压缩机工作、箱门关闭时,风扇电动机与制冷压缩机同步运行,以保证箱内空气的热交换循环。此时若打开箱门,为防止箱内冷空气外流,箱门上的风扇控制开关断开,使风扇电动机暂停工作;待箱门关闭后,风扇电动机随即启动运行。

       为了使化霜水顺利排出箱体外和防止风扇口圈因温度低结霜影响风扇电机正常工作,在化霜电路中设置了接水盘加热器、排水管加热器和风扇口圈加热器等加热设备,它们与化霜加热器同步工作。

       (7)新1、2、0方式电冰箱控制电路

       图3-30为新1、2、0自动控制电冰箱电路。它主要包括温度控制电路和制冷性能补偿电路。

       图3-30 新1、2、0方式电路图

       1.冷冻室温控器 2.FCS加热器 3.启动电容器 4.运转电容器 5.过载保护器 6.压缩机电动机 7.冷藏室温控器 8.电磁阀 9.SP加热器 10.化霜加热器 11.温度熔丝 12.DS加热器 13.融霜开关 14.灯开关 15.箱内灯

       ①温度控制电路。冷藏室温控器由双感温系统组成,即感温管A和B。当冷藏室温度上升到3.5℃时,A感温系统使冷藏室温度控制器触点断开,电磁阀因电源被切断而关闭,制冷剂进入冷藏室蒸发器蒸发制冷。当蒸发器温度达到B感温系统控制值时,冷藏室温控器使电磁阀因接通电源而开启,制冷剂不再流入冷藏室蒸发器。冷冻室温控器直接控制压缩机电动机的开停。同时,融霜开关与冷冻室温控器装在一起,当需要融霜时可用手动控制,使融霜开关的a与c接通,此时冷冻室温控器断电,压缩机电动机停止工作,而融霜电加热丝工作,使冷冻室内化霜,待化霜完毕,融霜开关自动复位,使a与b触点接通,压缩机运行。

       ②制冷性能补偿电路。FCS加热器称为冷冻室低温补偿加热器,它装在冷冻室温控器的感温管前部。当外界温度过低时,压缩机启动困难,加热器将温控器前部稍微加热,使压缩机能正常启动,保持冷冻室内温度在需要的范围内。DS加热器称为融霜保证加热器,装在冷冻室温控器的感温管上。当融霜时,DS加热器也同时对冷冻室感温管稍微加热,保证融霜完毕后能自动复位到正常运行状态。SP加热器称为防止冻结用加热器,它设置在冷藏室蒸发器出口和冷冻室进口间的连接管内。制冷剂在冷冻室蒸发器中蒸发时,冷藏室蒸发器和冷冻室蒸发器连接管因被稍微加热而形成局部热区,使冻结的冰融化,从而减少故障。

根据电冰箱制冷系统原理绘出控制系统方框图

       家用电冰箱的制冷系统 1.制冷循环图1即为现代压缩式制冷循环的示意图。冰箱的绝缘箱体1中有供制冷剂蒸发的管路2。制冷剂蒸发时大量吸收冰箱内的热量,使箱内温度降低。蒸发为气体的制冷剂由压缩机3吸到机内,经压缩成为高温高压气态送到冷凝器4。在流经冷凝器时向四周空气散热而凝聚为液态,经毛细管的节流再次送到冰箱内。上述过程周而复始不停地进行,完成着连续的制冷循环。 2.工作原理 图2为压缩式冰箱工作原理图。接通电源后,压缩机开动,将在蒸发器内的制冷剂蒸气吸入,经压缩后形成高压高温蒸气排出,进入冷凝器降温后变成高压液体,然后通过过滤器、毛细管进入蒸发器内变成低温低压液体,在蒸发器内沸腾,同时吸收冰箱内的热量,变为饱和蒸气,再次被压缩机吸回,如此循环不止;便能使冰箱内部的热量不断转移到周围环境中去。 3.制冷系统部件 家用冰箱的制冷系统由压缩机、冷凝器。干燥过滤器、毛细管、蒸发器、积液器等六部 份组成。 (1)压缩机:将蒸发器中吸收热量而汽化了的制冷剂吸入,经压缩成为高温高压气体送至冷凝器。 (2)冷凝器:利用特殊的结构迅速散热,使从压缩机送来的高温高压气态制冷剂很快变为液态。 家用电冰箱因为功率较小,所以冷凝器均为自然对流空气冷却式,按结构特点又可分为 百页窗式、钢丝式和内藏式三种。 (3)干燥过滤器:其外形象一只长金属园筒,内装粗细钢滤网(120—180目)、硅胶或其他吸水性物质。滤网用来过滤系统中有形的污物,硅胶用来吸附制冷剂中残留的水分(系统中残留水总量不大于20ppm)。 (4)毛细管:毛细管为内径0.5一l毫米左右、长度2—4.5米左右紫铜管做成的节流阀。它一方面可限制制冷剂的流过,使系统中冷凝器内保持足够的高压,利于制冷剂的液 化;另一方面还可控制制冷剂的蒸发压力和蒸发温度。 (5)蒸发器:蒸发器是冰箱中产生并交换冷量的部件。当液态制冷剂自毛细管进入蒸发器时,由于管径突然扩大,使得制冷剂压力骤减,液态制冷剂迅速蒸发(沸腾)为气态。在此过程中,制冷剂通过导热性能良好的蒸发器管壁和壳体,从冰箱内部大量吸热,完成了制冷功能。 (按蒸发器所产生冷量传递方式的不同,家用电冰箱又分为直冷式和风冷式两种)。 (6)积液管:制冷剂在蒸发器中汽化吸热后即进入积液管。积液管实际上就是管径比蒸发器管路更粗的一段管路。它可使在蒸发器中末完全汽化的少量液态制冷剂更完全汽化, 防止液滴进入压缩机。

冰箱启动器的原理、结构图、线路图分别是什么?

       电冰箱制冷系统原理绘控制系统方框图如下:

       制冷系统是一种利用外界能量使热量从温度较高的物质(或环境)转移到温度较低的物质(或环境)的系统。它的工作原理通过状态变化,进行热量交换。

       制冷系统一般是由制冷剂、压缩机、冷凝器、膨胀阀和蒸发器组成,它可分为蒸气制冷系统、空气制冷系统和热电制冷系统。

扩展资料:

       电冰箱制冷原理:

       单级蒸汽压缩制冷系统,是由制冷压缩机、冷凝器、节流阀和蒸发器四个基本部件组成。它们之间用管道依次连接,形成一个密闭的系统,制冷剂在系统中不断地循环流动,发生状态变化,与外界进行热量交换。

       液体制冷剂在蒸发器中吸收被冷却的物体热量之后,汽化成低温低压的蒸汽、被压缩机吸入、压缩成高压高温的蒸汽后排入冷凝器、在冷凝器中向冷却介质(水或空气)放热,冷凝为高压液体、经节流阀节流为低压低温的制冷剂、再次进入蒸发器吸热汽化,达到循环制冷的目的。

       这样,制冷剂在系统中经过压缩、冷凝、节流、蒸发四个基本过程完成一个制冷循环。在制冷系统中,蒸发器、冷凝器、压缩机和节流阀是制冷系统中必不可少的四大件,这当中蒸发器是输送冷量的设备。制冷剂在其中吸收被冷却物体的热量实现制冷。

       实际制冷系统中,除上述四大件之外,常常有一些辅助设备,如电磁阀、分配器、干燥器、集热器、易熔塞、压力控制器等部件组成,它们是为了提高运行的经济性,可靠性和安全性而设置的。

冰箱电路原理图

       冰箱启动器原理—启动器原理

       电冰箱PTC启动器直接与电机次绕组(启动绕组)串联后再与电机主绕组并联。AC220V电压加到电机两个绕组上后,由于分相作用,两绕组间产生相位差,从而形成椭圆旋转磁场,产生启动转矩,带动电机正常运转。

       之后,由于PTC启动器变成高阻态,启动电路接近断开,仅由运行绕组带动电机运行。电冰箱PTC(正温度系数)启动器又称为无触点启动器,实际上就是正温度系数热敏电阻启动器。

       当压缩机刚开始启动时,PTC元件温度较低,电阻较小,可以近似为直通电路。当启动电流增大到正常运转电流的4~6倍时,大电流使元件温度迅速升高,其电阻值可增加到几个数量级,通过的电流又下降到很小的稳定值,可近似为开路。

       冰箱结构示意图

       线路图

       该电路由电源电路、主电路和控制电路三部分组成。控制部分又包含电子温度控制电路和电子式温控手动除霜电路。见图1

       1 电源

       交流220V经变压器T801后,经整流二极管D805、D806整流、C806滤波,输出约+14V(12~13V)直流电压给压缩机继电器J1和加热继电器J2和三极管Q811、Q812供电。同时+14V直流电压,经限流电阻R812稳压管D808、C808简单稳压后输出约7V(6.8~7V)直流电压,为集成电路Q801、Q802和其它电路供电。

       2 电子温度控制电路

       温度控制电路由温度设置电路(R121、R122、R123、可调电位器R124)、冷藏室温度转换电平分压电路(RS、R806、C801)、温度下限电压比较器Q802 1、温度上限电压比较器Q8012、温控R—S触发器Q801 1、2和三极管Q811和启动继电器J2等组成。

       温度设置电路(R121、R122、R123、可调电位器R124)中的可调电阻R124是温度设置电位器。它装在冰箱内右侧板上,并标有MIN(弱冷)、NORMAL(正常)、MAX(强冷)三个控制标志点,用于根据需要调节箱内的控制温度。当R124调整到上端(MIN)位置时,温度下限比较电压U6约为2.4V;当R124调整到下端(MAX)位置时,温度下限比较电压U6约为1.6V;当R124调整到中间(NORMAL)位置时,温度下限比较电压U6约为2V。

       冷藏室温度转换电平分压电路(RS、R806、C801)中的RS是具有负温度系数的热敏电阻,其阻值随箱内温度上升而减小,因此图中A点电位UA的变化就反应了冷藏温度的变化,温度升高阻值减小,经分压后UA随之升高。

       电冰箱压缩机的启停由冷藏室的温度控制。冷藏室温度由传感器(热敏电阻Rs)检测。Rs和电阻R806组成分压器,随着冷藏室温度的降低,RS的阻值增大,Q802的4、7脚电压随之降低。集成电路Q802是电压比较器。内部电路如图2所示。其工作状态是:当+端电压—端电压时输出为高电平。

       图2 电压比较器内部电路图 图3 R—S触发器内部电路图

       Q802的5脚电压R801、R802分压决定,约为4.2V。6脚的电压由控制板的电位器R124决定,在1.6~2.4之间调整。当4、7脚的电压高于5脚和6脚电压时,2脚为高电平,1脚为低电平。

       Q802的2脚和1脚的输出分别输入到Q801的1脚和6脚,Q801是一块CMOS数字集成电路。如图3所示。温度控制电路只用了Q801的一半。1脚和6脚是其中两个或非门的输入端,这两个或非门的输出端3、4脚交叉连接到另一输入端的2脚和5脚,构成R—S触发器。工作状态是:S(SET、置“1”、置位)=“0”、R(RESET、置“1”、复位)=“1”、Q1=“1”;S=“1”、R=“1”、Q1=“1”;S=“1”、R=“0”、Q1=“0”。

       今天关于“电冰箱的工作原理图”的讨论就到这里了。希望通过今天的讲解,您能对这个主题有更深入的理解。如果您有任何问题或需要进一步的信息,请随时告诉我。我将竭诚为您服务。

The End